Ch : 1 Fundamental Concepts
 \&

Ch : 2 Formulate

1. Identify monomial, binomial, trinomials :
(i) $\frac{m}{3}$
(ii) $m+2 n$
(iii) $\frac{\mathrm{m}^{2}}{\mathrm{n}^{2}}$
(iv) $5+3 \mathrm{x}+\mathrm{y}$
(v) 2 a
(vi) $\mathrm{a}-\frac{2}{\mathrm{a}}$
2. Add \qquad
(i) $3 x^{2}, 6 x^{2},-9 x^{2}$ and $\frac{5}{3} x^{2}$
(ii) $3 \mathrm{a}^{2} \mathrm{~b}^{4},-2 \mathrm{a}^{2} \mathrm{~b}^{2}, 5 \mathrm{a}^{2} \mathrm{~b}^{2}, 12 \mathrm{a}^{2} \mathrm{~b}^{4}, 3 \mathrm{a}^{2} \mathrm{~b}^{2}$ and $5 \mathrm{a}^{2} \mathrm{~b}^{4}$
3. Subtract
(i) $\frac{3}{2} x y$ from $\frac{5}{2} x y$
(ii) $5 \mathrm{a}-9 \mathrm{~b}$ from $7 \mathrm{a}+10 \mathrm{~b}$
4. How much smaller is $5 x-8 y+9 z$ than $12 x-10 y-3 z+16$?
5. If the perimeter of a triangle is $4 y-3 x+2 z$ cm and two sides of a triangle measure $4 x+2 y+z$ cm and $3 \mathrm{x}+7 \mathrm{y}-2 \mathrm{zcm}$ and, find the length of third side of triangle?
6. Multiple
(i) $\frac{-4}{7} x^{2} y^{2}$ and $\frac{-2}{5} x^{2} y^{2} z$
(ii) $a x-b y+c z$ by $2 a$
(iii) $\left(x+\frac{1}{2}\right)\left(x-\frac{1}{3}\right)$
(iv) $x-3 y+4$ and $5 x+y-2$
(v) $(x+1)(x-1)(x+2)$
7. Divide :
(i) $6 a^{4}$ by $-2 a$
(ii) $-52 a b^{3} c^{5}$ by $26 a^{3} b c^{2}$
(iii) $\left(8 a^{2} b^{3}-6 a^{3} b^{2}+4 a b^{2}-2 a+b\right) \div 2 a b$
(iv) $4 x^{2}-4 x-17$ by $2 x-5$
(v) $4 x^{3}-8 x^{2}-9 x+8$ by $2 x-3$
(vi) $x^{5}-4 x^{4}-6 x^{3}+21 x^{2}-24 x+26$ by $x^{2}-2 x+3$
8. Simplify :
(i) $12 \mathrm{x}-[3 \mathrm{x}-2 \mathrm{y}-\{\mathrm{y}-2(\mathrm{x}-\overline{2 \mathrm{x}+\mathrm{y}})\}]$
(ii) 12 a of $\frac{1}{2}-6 a^{2} \div 3 a+(a+a)$
9. Make R the subject of the formula $A=P+\frac{P R T}{100}$ Also find R, when $A=1600, P=1000$, and $\mathrm{T}=5 \ldots \ldots$.
[04]
10. Change the subject of the formula $\mathrm{R}=\sqrt{\frac{3 \mathrm{v}}{\pi \mathrm{h}}}$ to h , Also find h , when $\mathrm{A}=88, \mathrm{r}=2$ and $\pi=\frac{22}{7}$
11. Change the subject of $S=u+\frac{1}{2} f(2 x-1)$ to f. And find of when $S=49, u=1$ and $x=2$ [04]

Best of Luck

